CHEM 116 - Honors and Majors General and Analytical Chemistry I

2 Exams, 6 Quizzes, 7 Labs, 9 Weeks HWK - 595 points (1245 in course)

EII: AVE = 108 (72\%) Range: 49-148
El: AVE = 87 (58\%)
A 100120
B $\quad 70 \quad 90$
$\begin{array}{lll}C & 50 & 70\end{array}$
D $\quad 40 \quad 60$

Class Averages

EXAM	195	65%
QZ	37	61%
LAB	118	84%
HWK	73	77%

Course Grade Estimate

Q1	6.0	Q4	7.8
Q3	4.2	Q5	Q.5
E1	19	Q7	6.1
E1	E5	16	L5
E2	17	E7	$12 * * *$
L3	18	SP	17

A 75\%
B $\quad 65 \%$ class average 72.1%
C 50% GPA 3.1
D 40% 7+

Chemical Equilibrium

"When a system is in chemical equilibrium, a change in one of the parameters of the equilibrium produces a shift in such a direction that, were no other actors involved in this shift, it would lead to a change of opposite sign in the parameter involved."

Henri Louis Le Châtelier, 1888

END OF WEEK SWITCHING TO HARRIS TEXT

6.8 Le Châtelier's Principle
 6.9 Equilibria Involving Real Gases (Activity)

Relationship of K 's of Related Equilibria

$$
K_{\mathrm{P}}=55.6 \text { for } \quad \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)
$$

EX 5. For the above reaction $\left(K_{\mathrm{P}}=P_{\mathrm{HI}}^{2} / P_{\mathrm{H} 2} P_{\mathrm{I} 2}\right)$ what is K_{P} for:
a) $2 \mathrm{H}_{2}(g)+2 \mathrm{I}_{2}(g) \rightleftharpoons 4 \mathrm{HI}(g)$
multiply all coefficients by $n=>K_{\text {new }}=K_{o}{ }^{n}$
b) $2 \mathrm{HI}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g)$
reverse reaction (multiply by -1) $=>K_{\text {new }}=K_{0}{ }^{-1}=1 / K_{0}$
c) $1 / 2 \mathrm{H}_{2}(g)+1 / 2 \mathrm{I}_{2}(g) \rightleftharpoons \mathrm{HI}(g)$
multiply all coefficients by $n=1 / 2 \Rightarrow K_{\text {new }}=K_{0}^{1 / 2}=\sqrt{ } K_{0}$

Relationship of K 's of Simultaneous Equilibria

EX 6. Find the equilibrium constant for

$$
\mathrm{SO}_{2}(g)+\mathrm{CO}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g)+\mathrm{CO}(g)
$$

if you know the equilibrium constants for the following reactions:

1) $\mathrm{SO}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g)$

$$
\begin{aligned}
& K_{1}=P_{\mathrm{SO} 3} / P_{\mathrm{SO} 2} P^{1 / 2} \\
& K_{2}=P_{\mathrm{CO}} P^{1 / 2} \mathrm{O} 2
\end{aligned} P_{\mathrm{CO} 2}
$$

2) $\mathrm{CO}_{2}(g) \rightleftharpoons \mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g)$
3) +2$): \mathrm{SO}_{2}(g)+1 / 2 \mathrm{O}_{2}(g)+\mathrm{CO}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g)+\mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g)$

$$
K=\left(P_{\mathrm{SO} 3} / P_{\mathrm{SO} 2} P^{1 / 2} \mathrm{O} 2\right)\left(P_{\mathrm{CO}} P^{1 / 2} \mathrm{O} 2 / P_{\mathrm{CO} 2}\right)=K_{1} K_{2} \text { add reactions, multiply } K^{\prime} \mathrm{s}
$$

Relationship of K 's of Simultaneous Equilibria

EX 6. Find the equilibrium constant for

$$
\mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)
$$

if you know the equilibrium constants for the following reactions:

$$
\begin{array}{ll}
\text { 1) } \mathrm{PCl}_{5}(s) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) & K_{1}=P_{\mathrm{PC} 13} P_{\mathrm{Cl} 2} \\
\text { 2) } \mathrm{PCl}_{5}(s) \rightleftharpoons \mathrm{PCl}_{5}(g) & K_{2}=P_{\mathrm{PCl} 5}
\end{array}
$$

1) - 2): $\mathrm{PCl}_{5}(\mathrm{~s})+\mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)+\mathrm{PCl}_{5}(\mathrm{~s})$

$$
\left(P_{\mathrm{PC} 13} P_{\mathrm{Cl} 2}\right) / P_{\mathrm{PC} 15}=K_{1} / K_{2} \text { subtract reactions, divide } K^{\prime} \mathrm{s}
$$

Interpreting Value of the Equilibrium Constant

$$
\begin{array}{ll}
\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(g) & K=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{H}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}}=5.6 \times 10^{40} \\
\mathrm{Cl}_{2} \mathrm{O}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 2 \mathrm{HOCl}(g) & K_{\mathrm{P}}=\frac{\left[\mathrm{HOCl}^{2}\right.}{\left[\mathrm{Cl}_{2} \mathrm{O}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}=0.0900 \\
\mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) & K_{\mathrm{P}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}=4.7 \times 10^{-31} \\
K>1 \Rightarrow>\text { product-favored; } \mathrm{K} \gg 1 \Rightarrow \text { reaction essentially complete } \\
K<1=>\text { reactant-favored; } \mathrm{K} \ll 1 \text { e> essentially no reaction }
\end{array}
$$

Solving Equilibrium Problems

Find K given initial partial pressures and one equilibrium partial pressure.
EX 8. 4.00 atm of $\mathrm{H}_{2}(\mathrm{~g})$ and 2.00 atm of $\mathrm{I}_{2}(\mathrm{~g})$ are mixed and allowed to react. When equilibrium is reached 3.76 atm of $\mathrm{HI}(\mathrm{g})$ is formed. What is $K p$ for the reaction?

$$
K_{\mathrm{P}}=\frac{P_{\mathrm{HI}}^{2}}{P_{\mathrm{H} 2} P_{\mathrm{I} 2}}=\frac{(1.88)^{2}}{(4.00-1.88)(2.00-1.88)}=55.6
$$

Solving Equilibrium Problems

Given K_{sp} for dissolution of a solid, find ion concentrations.
EX 11. What are the equilibrium concentration of the ions at $25^{\circ} \mathrm{C}$ if $\mathrm{Ksp}=$ 3.2×10^{-25} ?

EQ

$$
\begin{aligned}
& \mathrm{AuCl}_{3}(\mathrm{~s}) \rightleftharpoons \quad \begin{array}{c}
\mathrm{Au}^{3+}(\mathrm{aq}) \\
+x
\end{array} \\
& \begin{aligned}
+x \mathrm{Cl}^{-}(\mathrm{aq}) \\
+3 x
\end{aligned} \\
& K_{\mathrm{sp}}=x(3 x)^{3}=27 x^{4}=>x=\left(K_{\mathrm{sp}} / 27\right)^{1 / 4} \\
&= {\left[\left(3.2 \times 10^{-25}\right) / 27\right]^{1 / 4} } \\
&= 3.3 \times 10^{-7}=\left[\mathrm{Au}^{3+}\right] \\
& 9.9 \times 10^{-7}=\left[\mathrm{Cl}^{-}\right]
\end{aligned}
$$

Solving Equilibrium Problems

Treating systems with a small equilibrium constant
EX 13. If 2.00 mol of HBr were placed in a 1.00 L vessel at 1495 K what would be the equilibrium concentration of all species if $K=2.86 \times 10^{-5}$?

| | $2 \mathrm{HBr}(\mathrm{g})$ | \rightleftharpoons | $\mathrm{H}_{2}(\mathrm{~g})$ |
| :--- | :---: | :---: | :---: |$+$| $\mathrm{Br}_{2}(\mathrm{~g})$ | |
| :---: | :---: |
| I | 2.00 M |
| C | $-2 x$ |

Solving Equilibrium Problems

Systems requiring a quadratic equation
EX 14. At a particular temperature $K=9.1 \times 10^{-4}$. Determine the concentration of all ions in a solution that is initially $2.0 \mathrm{M} \mathrm{FeSCN}^{2+}$.

Le Châtelier's Principle

"When a system is in chemical equilibrium, a change in one of the parameters of the equilibrium produces a shift in such a direction that, were no other actors involved in this shift, it would lead to a change of opposite sign in the parameter involved."

Henri Louis Le Châtelier, 1888
I. change of temperature at constant pressure
II. change of total pressure at constant temperature
a) add or remove gaseous reactant or product at constant volume
b) change volume of container
c) add inert gas (one not involved in the reaction) at constant volume
III. change of concentration/partial pressure at constant volume (same as II a)

Le Châtelier's Principle - Change P (T Constant)

1) Pressure induced phase transition

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \\
d=0.917
\end{gathered} \rightleftharpoons \quad \begin{gathered}
\mathrm{H}_{2} \mathrm{O}(I) \\
d=0.999
\end{gathered}
$$

Density $=m / V=>$ liquid water has a larger volume available to a given mass of molecules than ice does. Therefore, ice melts under pressure (remember that the phase diagram for water has a negative slope for the solid/liquid coexistence line).

Le Châtelier's Principle - Change P (T, V Constant)

Law of Mass Action

For $a A+b B<=>c C+d D$ the equilibrium constant K is

$$
K=\frac{P^{c}{ }_{C} P^{d}{ }_{D}}{P^{a}{ }_{A} P^{b}{ }_{B}}
$$

2) add inert gas (one that does not participate in the chemical equilibrium Since $P_{i}=n_{i} R T / V$, the partial pressures of all gases participating in the equilibrium reaction are unaffected by the presence of the inert gas. Hence so is the equilibrium constant.

Le Châtelier's Principle - Change P (T, V Constant)

Law of Mass Action

For $a A+b B<=>c C+d D$ the equilibrium constant K is

$$
K=\frac{P^{c}{ }_{C} P^{d}{ }_{D}}{P^{a}{ }_{A} P_{B}^{b}}
$$

3) add gaseous reactant or product

Since $P_{i}=n_{i} R T / V$, partial pressures of all other gases participating in the equilibrium reaction are unaffected. But K would change and it is a constant! Therefore if added gas were a reactant, K would decrease unless equilibrium shifts to products => equilibrium must shift to products. Similarly, were the added gas a product, the equilibrium would shift toward reactants.

Le Châtelier's Principle - Change P (T, V Constant)

Law of Mass Action

For $\quad \mathrm{aA}+\mathrm{bB}<=>\mathrm{cC}+\mathrm{dD}$ the equilibrium constant K is

$$
K=\frac{P^{c}{ }_{C} P^{d}{ }_{D}}{P^{a}{ }_{A} P_{B}^{b}}
$$

4) decrease volume by compression (consider 4-fold decrease)

Since $P_{i}=x_{\mathrm{i}} P_{\text {TOT }}$, each P_{i} in K (actually Q until new equilibrium established) increases 4-fold. If total \# of moles of reactant gases in balanced chemical equation same as total \# of moles of product gases then no effect - powers that P_{i} are raised to in numerator of K same as in denominator.
P increase shifts equilibrium to side with fewer moles in balanced equation.

Le Châtelier's Principle - Change T (P Constant)

Exothermic reactions gives off heat, endothermic reactions require heat
a) the following reaction is exothermic

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) \quad+\text { heat }
$$

b) the following reaction is endothermic

$$
+ \text { heat } \quad \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)
$$

analogy with the stress imposed by adding or removing a gaseous reactant if one were to consider heat as a "reactant" in the case of an endothermic reaction and as a "product" for an exothermic reaction.

Strong Acids and Bases

END OF WEEK SWITCHING TO HARRIS TEXT

```
OVERVIEW of this material in Harris:
6-1, 6-2, 6-5 - 6-7
omitting the thermodynamics
```

7.1 The Nature of Acids and Bases
7.2 Acid Strength
7.3 The pH Scale

FRIDAY QUIZ ON
CHEMICAL
EQUILIBRIUM
7.4 Calculating the pH of Strong Acid Solutions
7.6 Bases (just the strong ones)

Nature of Acids and Bases

acid: accepts electron pair base: donates electron pair
donates H^{+} accepts H^{+}
produces H^{+} produces OH^{-}

problem: most general
must have H
need aqueous solution

Brønsted-Lowry: Conjugate Acid-Base Pairs

Conjugate acid-base pair

Conjugate acid-base pair

EX 1. For each of the following write the formula of its conjugate.

ACIDS	BASES		
HCl	Cl^{-}	NH_{3}	NH_{4}^{+}
$\mathrm{H}_{2} \mathrm{O}$	OH^{-}	$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{H}_{3} \mathrm{~S}^{+}$
NH_{3}	NH_{2}^{-}	NaOH	$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	O^{2-}	OH^{-}
SH^{-}	S^{2-}	CN^{-}	HCN

Brønsted-Lowry: Acid-Base Pair Chemistry

acids - proton donors $=>$ form a species [acid $-\mathrm{H}^{+}$] called conjugate base

bases - proton acceptors => form a species [base $+\mathrm{H}^{+}$] called conjugate acid
weak acid or base uses equilibrium arrow

$\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{OH}^{-}(a q)$

Brønsted-Lowry: Acid-Base Pair Chemistry

two acids competing to give up H^{+}- the stronger acid "wins"

two bases competing for the acidic proton - the stronger base "wins"

EX 3. From the Brønsted-Lowry point of view, which is the stronger acid in the following reaction:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq})<=>\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{NO}_{3}^{+}(\mathrm{aq})
$$

